Nox1 NADPH oxidase is necessary for late but not early myocardial ischaemic preconditioning.
نویسندگان
چکیده
AIMS Ischaemic preconditioning (IPC) is an adaptive mechanism that renders the myocardium resistant to injury from subsequent hypoxia. Although reactive oxygen species (ROS) contribute to both the early and late phases of IPC, their enzymatic source and associated signalling events have not yet been understood completely. Our objective was to investigate the role of the Nox1 NADPH oxidase in cardioprotection provided by IPC. METHODS AND RESULTS Wild-type (WT) and Nox1-deficient mice were treated with three cycles of brief coronary occlusion and reperfusion, followed by prolonged occlusion either immediately (early IPC) or after 24 h (late IPC). Nox1 deficiency had no impact on the cardioprotection afforded by early IPC. In contrast, deficiency of Nox1 during late IPC resulted in a larger infarct size, cardiac remodelling, and increased myocardial apoptosis compared with WT hearts. Furthermore, expression of Nox1 in WT hearts increased in response to late IPC. Deficiency of Nox1 abrogated late IPC-mediated activation of cardiac nuclear factor-κB (NF-κB) and induction of tumour necrosis factor-α (TNF-α) in the heart and circulation. Finally, knockdown of Nox1 in cultured cardiomyocytes prevented TNF-α induction of NF-κB and the protective effect of IPC on hypoxia-induced apoptosis. CONCLUSIONS Our data identify a critical role for Nox1 in late IPC and define a previously unrecognized link between TNF-α and NF-κB in mediating tolerance to myocardial injury. These findings have clinical significance considering the emergence of Nox1 inhibitors for the treatment of cardiovascular disease.
منابع مشابه
NADPH oxidase NOX1 controls autocrine growth of liver tumor cells through up-regulation of the epidermal growth factor receptor pathway.
FaO rat hepatoma cells proliferate in the absence of serum through a mechanism that requires activation of the epidermal growth factor receptor (EGFR) pathway. The aim of this work was to analyze the molecular mechanisms that control EGFR activation in these and other liver tumor cells. Reactive oxygen species production is observed a short time after serum withdrawal in FaO cells, coincident w...
متن کاملPhosphorylation of Nox1 regulates association with NoxA1 activation domain.
RATIONALE Activation of Nox1 initiates redox-dependent signaling events crucial in the pathogenesis of vascular disease. Selective targeting of Nox1 is an attractive potential therapy, but requires a better understanding of the molecular modifications controlling its activation. OBJECTIVE To determine whether posttranslational modifications of Nox1 regulate its activity in vascular cells. M...
متن کاملNox1 mediates basic fibroblast growth factor-induced migration of vascular smooth muscle cells.
OBJECTIVE Basic fibroblast growth factor (bFGF) stimulates vascular smooth muscle cell (SMC) migration. We determined whether bFGF increases SMC reactive oxygen-species (ROS) and studied the role of ROS for SMC migration. METHODS AND RESULTS bFGF rapidly increased rat SMC ROS formation and migration through pathways sensitive to inhibition of NADPH oxidases, PI3-kinase, protein kinase C, and ...
متن کاملReactive oxygen species derived from NOX1/NADPH oxidase enhance inflammatory pain.
The involvement of reactive oxygen species (ROS) in an augmented sensitivity to painful stimuli (hyperalgesia) during inflammation has been suggested, yet how and where ROS affect the pain signaling remain unknown. Here we report a novel role for the superoxide-generating NADPH oxidase in the development of hyperalgesia. In mice lacking Nox1 (Nox1(-/Y)), a catalytic subunit of NADPH oxidase, th...
متن کاملNADPH oxidases and atherosclerosis: unraveling the details.
NADPH OXIDASE (NOX)-mediated generation of reactive oxygen species (ROS) was first described in phagocytic cells, and for many years it was assumed that the primary role of NADPH oxidase activation was bacteriocidal; phagocytes generated a burst of ROS following activation. More recently, it has become clear that not only do multiple homologous NADPH oxidase subunits exist but that the expressi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 102 1 شماره
صفحات -
تاریخ انتشار 2014